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Introduction

Adiabatic Quantum Computation (AQC), also known as Quantum Anneal-
ing, is a computational model that uses quantum mechanics to find the lowest
energy state of a cost Hamiltonian. [1] This model is used by D-Wave quan-
tum computers and has been shown to be equivalent to the gate-circuit model
used by IBM-Q computers. [2]

AQC is similar to a group of classical algorithms called Simulated An-
nealing (SA), which use statistical mechanics to solve optimization problems
and other combinatorial search problems. AQC generally performs better
than SA, taking less time to complete and being more accurate in edge cases
(taking the help of quantum tunneling to escape out of local optimal solu-
tions). One key di↵erence between SA and AQC is that SA uses temperature
as a control parameter to find the optimal configuration when temperature
reaches zero, while the system in AQC is always close to the instantaneous
ground state.

AQC started as an approach to solving optimization problems and has
evolved into an important universal alternative to the standard circuit model
of quantum computing, with deep connections to both classical and quantum
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complexity theory and condensed matter physics. The time complexity for
an adiabatic algorithm is dependent on the gap in the energy eigenvalues
(spectral gap) of the Hamiltonian.

In this project we will implement an AQC algorithm for semiprime fac-
torization problem and attempt to figure out the time complexity of it.

Semiprime factorization problem

A semiprime number is a composite number that can be written as a product
of exactly two prime numbers. These factors may be equal to each other.
Semiprime numbers are used extensively in cryptography. These systems
rely on the fact that finding large prime numbers and multiplying them is
easy but finding the factor from the semiprime number is hard.

It is in fact intractable, which means that the time required to factor-
ize a number is necessarily exponential in it’s length, or in other words has
exponential time complexity. Semi-prime factorization is an increasingly im-
portant number theoretic problem, since it is computationally intractable.
Further, this property has been applied in public-key cryptography, such as
the Rivest–Shamir–Adleman (RSA) cryptosystem for secure digital commu-
nications.

Overall, semiprime numbers remain an active area of research with im-
plications to cryptography and number theory.

Overall Process

The overall process of finding the factors of a number N of length bN can be
understood using Flowchart 1.
Starting with our number N , we first choose our guess bP ,bQ such that

bN = bP + bQ or bP + bQ + 1

we will need to loop over all possible guesses. We start by generating clauses
based on our initial guess. Then, we apply variable reduction rules to make
the clauses as information-dense as possible. If the rules return an error due
to impossible clauses, we reject this iteration of our guess and start over with
a new one.

At this point, we have completed the classical preprocessing part of our
method. We use the reduced forms of clauses to build Hamiltonians that
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Figure 1: A Flowchart showing the overall workflow of factorizing semiprime
N using AQC (blue) with some classical preprocessing (green)

assign the lowest energy to states encoding our solution. These Hamiltonians
are used to create our problem Hamiltonian.

Next, we use Adiabatic Quantum Computation (AQC) to find the ground
state of the problem Hamiltonian. After repeated measurements, this will
provide us with a state that minimizes the number of broken clauses. We can
then check if we have arrived at our factors p and q by simply multiplying
them. If the multiplication does not result in a value equal to N , we must
proceed with our next guess.

We repeat these steps until we arrive at our required factors. We would
have at most b(bN + 1)/2c guesses, which would not make this method inef-
ficient.

In the following sections, we will examine each step outlined in greater
detail.

Classical Preprocessing

Classical preprocessing refers to the steps required to construct as well as
minimize the computational complexity of the clauses required.
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Cost Function

In order to convert the semiprime factorization problem to an optimization
problem, we must construct a function over our binary variables

C : {0, 1}m ! R

such that the combination of inputs encoding our solution would have the
lowest cost assigned.

In the first AQC implementation for factorization, where the number 21
was factored [3], a very straightforward way to construct such a function was
given

C = [N � P ⇥Q]2

where,

P =
bP�1X

k=0

2kpk

Q =

bQ�1X

l=0

2lql

are the binary expansions of P and Q using binary variables. It’s easy to see
that for the correct factors, the cost would be zero. This method however
doesn’t scale well as the spectrum-width scales as N

2 (cost corresponding
with p = q = 0).

Another method to construct the cost function used long hand multipli-
cation tables [4]. In this case we build a multiplication table like the one for
143 in Figure 2. Then, for each column we can define a cost function. For
column b2, the variables must satisfy

p2 + p1q1 + q2 + z12 = 1 + 2z23 + 4z24

which would give us the cost function

C2 = (p2 + p1q1 + q2 + z12 � 1� 2z23 � 4z24)
2

The complete cost function would be the sum of the costs associated with
each column.

C =
X

k

Ck
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Figure 2: Multiplication table for 143 using binary variables for factors as
well as carries.

Rule based variable reduction

This method not only controls the spectrum-width but also enables us to
use classical preprocessing through logical deductions to reduce the number
of variables needed to factor a given number [5]. This reduction could even
make the number of variables less than the size of the problem bN . To achieve
this, we need to find a set of rule-templates that can be tested on our set
of equations in polynomial time and apply suitable substitutions. I have
identified an (incomplete) set of rules, given in Table 1

Using a python script, a sample output for a small number is given below
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Rule Variables Reduced

P
n

i=0 aiAi = 0 =) Ai = 0 n

A = 1 1

A+B = 1 =) A = ¬B 1

(aA = bB) ^ (a = b) =) A = B 1

A+B = 2X =) A = B = X 2

A+B + 1 = 2X =) (A = ¬B) ^ (X = 1) 2

A+B + 2C = 2X + 1 =) (A = ¬B) ^ (C = X) 2

Minmax Mismatch* 1

* For an equation written in the form
P

i
aiAi + c =

P
i
biBi + d, let bj =

max ({bi}), then if max (
P

i
aiAi + c) =

P
i
ai + c < bj + d =) Bj = 0.

This rule doesn’t completely eliminate the equation.

Table 1: A small set of rules for equation patterns encountered frequently
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N=143, before Optimization

..--==Opt100.00%==--.. <N = 143 [1, 1, 1, 1, 0, 0, 0, 1] >

>>> P array : [p0, p1, p2, p3]

>>> Q array : [q0, q1, q2, q3]

>>> Equations :

Removed : []

0000 : 1*p0*q0=+1

0001 : 1*p0*q1+1*p1*q0=2*z_1_2+1

0002 : 1*p0*q2+1*p1*q1+1*p2*q0+1*z_1_2=2*z_2_3+4*z_2_4+1

0003 : 1*p0*q3+1*p1*q2+1*p2*q1+1*p3*q0+1*z_2_3

=2*z_3_4+4*z_3_5+8*z_3_6+1

0004 : 1*p1*q3+1*p2*q2+1*p3*q1+1*z_2_4+1*z_3_4

=2*z_4_5+4*z_4_6+8*z_4_7+0

0005 : 1*p2*q3+1*p3*q2+1*z_3_5+1*z_4_5=2*z_5_6+4*z_5_7+0

0006 : 1*p3*q3+1*z_3_6+1*z_4_6+1*z_5_6=2*z_6_7+0

0007 : 1*z_4_7+1*z_5_7+1*z_6_7=+1

N=143, after Optimization

..--==Opt10.00%==--.. <N = 143 [1, 1, 1, 1, 0, 0, 0, 1] >

>>> P array : [1, p1, p2, 1]

>>> Q array : [1, 1-p1, 1-p2, 1]

>>> Equations :

Removed : [0, 1, 2, 7, 6, 5, 4]

0003 : 1*p2+1*p1=2*p2*p1+1

These rules are able to eliminate most of the variables, reducing the com-
plexity of the problem considerably.

Semiprimes generated by the multiplication of the first 1000 primes were
tested. Figure 3 shows us the scaling law of the same.

Limit testing of the rule based approach

As there is no generalization of the rules nor is there a complete set of rules
provided somewhere, various e↵orts to reduce the number of variables into the
sub-bN regime have been tried in hopes of reducing the complexity to make
it possible to factor a large semiprime with the hardware and technology
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Figure 3: Scaling of the number of variables with the size of the problem bN

available presently. For example, in a 2021 article [6], Figure 4 was reported.
For example take the final equation that was left after optimization of

143.
A+B = 2AB + 1

we could in this case set B = ¬A and completely remove all variables from
the problem, in which case the classical preprocessing was able to give us the
factors of the number without even needing to go to the AQC part.

But unable to generalize the equations, I took a di↵erent approach to test
the limits to which this preprocessing idea could be taken. To see how this
approach works, lets take a simple rule from the table

A+B = 2X

or the cost function
C = (A+B � 2X)2

Lets make a table with all the possible inputs and their associated cost.
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Figure 4: Scaling law using a di↵erent set of rules

A B X Cost

0 0 0 0

0 0 1 4

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 4

1 1 1 0

It can be seen from the table that the zero cost corresponds with equating
the variables with each other

A = B = X

which results in the reduction of 2 variables.
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A similar approach is taken for any equation encountered. For example
take the equation

A+B = 2C + 1

and its associated cost function

C(A,B,C) = (A+B � 2C � 1)2

We can then create a table with all the combinations of inputs and costs,
which in this case would be

A B C Cost

0 0 0 1

0 0 1 9

0 1 0 0

0 1 1 4

1 0 0 0

1 0 1 4

1 1 0 1

1 1 1 1

We can then filter out all the combinations that do not satisfy the clause,
which leaves us with only two combinations.

A B C

0 1 0

1 0 0

Noticing that C is always zero, we can completely remove this variable
from all the equations. Also as A + B = 1, we can set B = ¬A and replace
B everywhere as well. The value of B can be recovered after the completion
of AQC, its value being linked to the value of the variable A. Thus, we have
reduced the number of variables required by 2.
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When B is replaced, it is replaced wherever it occurs in any of the clauses
for a semiprime. Doing so starts a domino reaction with the substitution
causing changes to other equations that could then be retried with the pos-
sibility of more variables being reduced.

It is not necessary for all the variables involved to be reduced in such a
way, for example in the case of A+2B+4C = D+E, in which case the only
reduction that can be made would be to set C to zero.

We have not considered substitutions of variables for testing as that would
completely reduce all the variables.

This method is not e�cient, and in fact itself a satisfiability problem.
This method wouldn’t be a part of our rule based variable reduction, and
has only been introduced to check the limits to which the classical processing
could reduce the problem.

Using a Rust program, the generated semiprimes were tested again.

It can be seen from the boxplot that the simple rules introduced before
was able to take us very close to the limit. But it also shows that this method
cannot be used to take make the variables less than bN . It is technically
possible to remove any of the carries left in the end as they always occur in
pairs, but doing so would increase the spectrum-width that we were trying
to control in the first place.

Any similar approach that reduces the spectrum-width would also face
the same downfall. For example, we could have tried to take non-binary
variables for the carries that would only occur between columns that are
next to each other in the multiplication table (carry aggregation) [7], but
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that seems to be an even looser condition as all it cares about are the upper
and lower limits.

Adiabatic Quantum Computation

Mathematics of AQC

AQC works due to the Adiabatic Theorem that states that a system evolving
due to a time varying hamiltonian Ĥ(t), which doesn’t have a degenerate
ground state (except possibly as t ! ⌧), would stay in the instantaneous
groundstate |0(t)i in the absence of external disturbances if it starts in the
groundstate |0(0)i, provided that the hamiltonian changes su�ciently slowly.
[8, 9]

Let the hamiltonian vary over a time ⌧ , then in terms of the dimensionless
parameter s = t/⌧ , the asymptotic form of the statevector in the case of large
⌧ is given by

��� ̂(s)
E
=
X

j

cj(s)e
�i⌧�j(s)

���ĵ(s)
E

c0(s) ⇡ 1 +O(⌧�2)

cj 6=0(s) ⇡
i

⌧
[Aj(0)� e

i⌧ [�j(s)��0(s)]Aj(s)] +O(⌧�2)

where �j(s) =
R

s

0 ds
0
✏j(s0) ds0, �j(s) = ✏j(s)� ✏0(s) and

Aj(s) =
1

�j(s)2

*
j(s)

�����
dĤ(s)

ds

�����0(s)
+

The condition for adiabatic evolution is given by the smallness of excita-
tion probability

⌧ � |Aj(s)|

1

�j(t)
2

�����

*
j(t)

�����
dĤ(t)

dt

�����0(t)
+����� = � ⌧ 1
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� =
1

�1(t)
2

�����

*
1(t)

�����
dĤ(t)

dt

�����0(t)
+�����


E

⌧g
2
min

=) ⌧ �
E

g
2
min

where E = maxs
D
1(s)

���dĤ(s)
dt

���0(s)
E
and gmin = mins ✏1(s)� ✏0(s)

Setup

For a satisfiability problem with n variables xi, a system with n qubits is
initialized to the ground state of the initial hamiltonian

Ĥ0 = g

X

i

�̂
(i)
x

where X̂
(i) is an operator X̂ acting on the ith qubit and g is a constant

controlling the initial strength of the hamiltonian.
System is initialized in the ground state

| 0i =


|0i � |1i

p
2

�Nn

=
1

p
2n

2nX

j=0

(�1)b(j) |ji

where b(j) is the parity of j.

Observables

Any binary variable xi that appears in the above clauses can be mapped to
the ith qubit using the observable

X̂i =
1� �̂

(i)
z

2
= 0 |0i h0|+ 1 |1i h1|

such that the measurement gives us the value of the binary variable at the
end.
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Problem Hamiltonian

For each clause Ci, the associated cost hamiltonian can be constructed by
simply substituting the observable at every occurrence of the variable and
multiplying any constants with identity. For example the clause

C = (A+B � 2X � 1)2

would be converted to

ĤC =
h
Â+ B̂ � 2X̂ � Î

i2

such that
ĤC |xii = C(xi) |xii

Every clause is converted to a hamiltonian in a similar way and our problem
hamiltonian is the sum of the individual cost hamiltonians.

Ĥp =
X

i

ĤCi

Annealing Schedule

The system would evolve according to the Time-Dependent Schrodinger
Equation

d

dt
| (t)i = �iĤ(t) | (t)i

where we have set ~ to 1. The time dependent hamiltonian is given by

Ĥ(t) = f⌧ (t)Ĥ0 + g⌧ (t)Ĥp

where f⌧ and g⌧ are non-increasing and non-decreasing functions denoting
the strengths of the initial and problem hamiltonian respectively with the
time scale parameter ⌧ . For simplicity, I’ll go with linear interpolation of
these hamiltonians i.e

Ĥ(t) =

✓
1�

t

⌧

◆
Ĥ0 +

t

⌧
Ĥp
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Choice of spectrum-width

From the equation

⌧ � ⇠ =
E

g
2
min

we can see that if we scale the spectrum by a factor of k

⇠
0 =

E
0

g
0
min

2

=
kE

k2g2min

=
⇠

k

leads to reduction of time required by a factor k. So, we’ll restrict the
spectrum-width to 1 and study the scaling relations.

Level Diagrams

The figure below shows a level diagram of the first two eigenvalues of Ĥ(t)
constructed for N = 247 factorization of which requires only 3 qubits, the
location of gmin is shown. The spectrum width ✏max�✏min has been restricted
to 1.
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In the above diagram, the energy di↵erence between the 1st excited state
and the ground state is plotted. The smaller the energy di↵erence the slower
the strength function must change in the optimum schedule.

Simulation

The evolution of our statevector can be numerically simulated using various
methods such as the Crank-Nicolson method which is numerically stable and
gives a unitary evolution which preserves the norm of our wavefunction.

For a timestep �t the Crank-Nicolson scheme can be written as

| (t+ �t)i =

 
Î +

iĤ(t+ �t)�t

2

!�1 
Î �

iĤ(t)�t

2

!
| (t)i

But I found that my implementation of the same in Julia was very slow
and a finite-di↵erence implementation of the same using a fraction of the
time-step yielded better results.

| (t+ �t)i =
⇣
Î � iĤ(t)�t

⌘
| (t)i

The wavefunction was re-normalized every few hundred time steps.

Observations

AQC for 30 semiprimes, ranging from 247 to 579349, was simulated. The
minimum time ⌧ required for the system to have a 95% probability of the
correct answers being measured was calculated.

The simulations showed a nice inverse relation between gmin and ⌧ as
shown in Figure 5.

The scaling of ⌧ with the number of qubits was also plotted in Figure 6,
but due to the lack of data points corresponding to � 8 qubits, commenting
about how the growth of time as a function of the qubits involved was not
possible.

The points have di↵erent colours representing the di↵erent number of
clauses involved in the problem hamiltonian, but even this classification
didn’t seem to give any meaningful observation.

For the case of linear interpolation between initial and problem hamilto-
nians, an exponential scaling is to be expected [9]. Ideally we would be able
to derive the scaling law between ⌧ and bN using this.
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Figure 5: Inverse relation due to restriction of spectrum-width to 1
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Figure 6: Time to anneal for 30 di↵erent semiprimes simulated
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Future Work

Choice of Annealing Schedule

It was possible to have a variety of di↵erent annealing schedules f⌧ (t) and
g⌧ (t) with the only restricting being that they be non-increasing and non-
decreasing respectively. Furthermore, as our problem hamiltonian is made
up of many hamiltonians formed from individual clauses, it is possible to
associate a strength function with every hamiltonian which would increase
independently from each other.

Derivation of the perfect schedule

If we are able to derive a lower bound for the 1st excitation energy, gbN (s),
such that for any semiprime of length bN would be bounded from below as

8s 2 [0, 1] (gbN (s)  �1(s))

then we’d be able to use this lower bound that would be the most e�cient
schedule, which could then be used to calculate a scaling relation between
bN and the time required to anneal ⌧ .

Conclusion

It can be seen that even after figuring out the perfect set of rules, making
the number of qubits required for factorizing a number of length bN couldn’t
be made sub-bN .

Linear interpolation is not a good schedule for the semiprime factorization
problem and may result in exponential time complexity. Better schedules,
preferably one derived from finding a theoretic lower bound, would have to
be used to verify if we can make a polynomial time complexity factorization
algorithm.
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